Sharp bounds for Seiffert mean in terms of weighted power means of arithmetic mean and geometric mean

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean

and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...

متن کامل

Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means

and Applied Analysis 3 The following sharp lower power mean bounds for 1/3 G a, b 2/3 H a, b , 2/3 G a, b 1/3 H a, b , and P a, b can be found in 4, 6 : 1 3 G a, b 2 3 H a, b > M−2/3 a, b , 2 3 G a, b 1 3 H a, b > M−1/3 a, b , P a, b > Mlog 2/ logπ a, b 1.8 for all a, b > 0 with a/ b. The purpose of this paper is to answer the question: for α ∈ 0, 1 , what are the greatest value p and the least...

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

Sharp bounds for Seiffert mean in terms of root mean square

respectively. Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities and properties for T and S can be found in the literature [1-14]. Let A(a, b) = (a + b)/2,G(a, b) = √ ab, and Mp(a, b) = ((a +b)/2) (p ≠ 0) and M0(a, b) = √ ab be the arithmetic, geometric, and pth power means of two positive numbers a and b, respectively. Then it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2014

ISSN: 1331-4343

DOI: 10.7153/mia-17-37